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The dynamic sti!ness matrix of an in"nite Timoshenko beam on viscoelastic foundation
to a harmonic moving load is established. This dynamic sti!ness matrix is essentially
a function of the velocity and frequency of the harmonic moving load. The critical velocities
and the resonant frequencies can be easily determined. The dynamic responses of
a European high-speed railway subjected to a harmonic moving load are calculated as an
example for demonstration and discussion.
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1. INTRODUCTION

The general dynamic sti!ness matrix of a "nite Timoshenko beam on viscoelastic
foundation for engineering applications has been well established [1}9]. It is probably the
simplest and the most convenient way to deal with the dynamic behavior of
a distributed-parameter beam or beam system described in the continuous-co-ordinate
system. Recently, this technique has been extended to an in"nite or semi-in"nite
Timoshenko beam on viscoelastic foundation in order to study the dynamic response of
a railway to a constant moving load [10]. There are only two degrees of freedom of
displacement involved in the analysis of an in"nite or semi-in"nite beam on viscoelastic
foundation to the moving load; therefore, the dynamic-sti!ness method is much more
simple and straightforward than any other mathematical procedure [11}22]. In some
practical cases [14}16], the moving load cannot be considered constant, the harmonic
component of the moving load could be important and should be taken into account in the
structural analysis, especially when the loading frequency coincides with the resonant
frequency of the railway. This is the purpose of this paper to establish the dynamic sti!ness
matrix of an in"nite or semi-in"nite Timoshenko beam on viscoelastic foundation to the
harmonic moving load for the railway engineering application.
0022-460X/01/150809#16 $35.00/0 ( 2001 Academic Press
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2. GOVERNING EQUATION

An in"nite Timoshenko beam on viscoelastic foundation is shown in Figure 1. The forces
and the deformations of a di!erential beam element are shown in Figure 2. The governing
equations for this case in the "xed co-ordinate system assigned as x and y have been derived
and given as follows [1]:
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All the symbols shown in Figures 1 and 2 and given in equations (1) and (2) are de"ned as
follows; y, b, and a represent the de#ection, shear distortion, and bending rotation of the
beam; m and J represent the mass and rotary inertia of the mass per unit length of the beam;
k@A and I represent the e!ective shear area and the second moment of area of the beam
Figure 2. A di!erential beam element.

Figure 1. An in"nite beam on viscoelastic foundation.
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section; E and G represent the Young's and shear moduli of the beam; k
s
and c

d
represent the

coe$cients of the foundation sti!ness and viscous damping per unit length of the beam; N,
<, and M represent the constant axial force, shear force, and bending moment at any beam
section respectively.

If another co-ordinate system assigned as x
1

and y
1

moving with a harmonic load
F travelling rightward at a constant speed v is also shown in Figure 1. The relationship
between these two co-ordinate systems are given as

x
1
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1
"y, a

1
"a, (3)

where t represents the travelling time of the moving co-ordinate system (or the harmonic
moving load F ), y

1
and a

1
also represents the de#ection and rotation of the beam

respectively.
Applying the chain rule gives the following results:
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The relationships between the derivatives of a and a@ have the same results as given in the
previous equation. Substituting equations (3) and (4) into equations (1) and (2) can yield the
following results:
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The previous equations are the governing equations for the vertical de#ection y
1

and the
rotation a

1
of a Timoshenko beam on viscoelastic foundation in the moving co-ordinate

system x
1

and y
1
.

3. COMPLEX WAVE NUMBER

The harmonic moving load can be assumed as F"F
0

eiut, the steady state solutions of
equations (5) and (6) could be expressed by

y
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1
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where U(x
1
) and W (x

1
) represent the amplitude functions for the de#ection y

1
(x

1
, t) and

rotation a
1
(x

1
, t) respectively. u represents the frequency of the harmonic moving load.

Substituting equation (7) into equations (5) and (6) and eliminating U or W can yield
a fourth order ordinary di!erential equation for U or W as follows:
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It should be noted that both the fourth order ordinary di!erential equations for variables
U and W have the same coe$cients A

1
, a, A

2
, and b given as
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The solution of equation (8) can be assumed as
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where p
j
represents the complex wave number. The real and imaginary parts of p

j
represent

the distance decay factor per unit length and the actual wave number of the beam
respectively.

The relationship between C
j
and D

j
can be obtained by substituting equations (7) and (10)

into equation (5) or (6) and given as
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Substituting equation (10) into equation (8) yields the equation for the complex wave
number p as
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If every coe$cient of the previous equation is not zero, the four di!erent roots could be
assumed as p
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4. DYNAMIC STIFFNESS MATRIX

The case of x
1
*0 for a positive-semi-in"nite beam as shown in Figure 3(b), C

1
, C

3
, D

1
and D

3
in equation (10) must be all zero due to the fact that there is no de#ection or rotation

at x"R. The de#ection and rotation at x
1
"0 assigned as D

1
and D

2
are the two degrees

of freedom of the displacements of this semi-in"nite beam. Equation (10) can be rewritten in
a matrix form as
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or expressed in a simple form as

MDN"[P`] MC`N. (15)



Figure 3. (a) A negative and (b) a positive-semi-in"nite beams on viscoelastic foundation.
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The corresponding nodal forces, which are the shear force and bending moment at x
1
"0,

are given by
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Substituting equation (15) into equation (17), the relationship between the nodal forces and
nodal displacements at the left end (x

1
"0) of a positive-semi-in"nite Timoshenko beam on

viscoelastic foundation can be obtained as

MF`N"[K`] MDN, (19)

where
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[K`] represents the dynamic sti!ness matrix for a positive-semi-in"nite beam (x
1
*0). The

details of [K`] are given as follows:
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The case of (x
1
)0) for a negative-semi-in"nite beam as shown in Figure 3(a), C

2
, C

4
, D

2
and D

4
in equation (10) must be all zero due to the fact that there is no de#ection or rotation

at x"!R. Following the same procedure as to formulate the dynamic sti!ness matrix for
a positive-semi-in"nite beam (x

1
*0), the dynamic sti!ness matrix [K~] for

a negative-semi-in"nite beam (x
1
)0) can be obtained as follows:
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The de#ection and rotation at the origin (x
1
"0) in the moving co-ordinate system are

assigned as the two degrees of freedom of the displacement, the dynamic sti!ness matrix for
an in"nite Timoshenko beam on viscoelastic foundation can be achieved by

[K]"[K`]#[K~]. (23)

All the sti!ness coe$cients are functions of the velocity and frequency of the harmonic
moving load F. It is interesting to note that the dynamic sti!ness matrix given by equation
(23) is also valid for the constant moving load (i.e., u"0) or for the static case (i.e., u"0
and v"0). In general [K`], [K~], and [K] are not symmetrical, but they can become
symmetrical when v"0. Furthermore, the sti!ness matrix [K] becomes a diagonal one, all
the o!-diagonal terms are zero.

5. SHAPE FUNCTION AND DISPLACEMENT WAVE

The coe$cients C
j
's ( j"1}4) can be expressed in terms of the nodal displacements at the

origin (x
1
"0) as
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The de#ection U(x
1
) and rotation W (x

1
) given by equation (10) can be rewritten in terms of

the nodal displacements D
1

and D
2

as follows:
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where /
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6. CRITICAL VELOCITY AND RESONANT FREQUENCY

The dynamic sti!ness matrix of an in"nite Timoshenko beam on viscoelastic foundation
to a harmonic moving load is established in this paper and given by equation (23). All the
dynamic sti!ness coe$cients are functions of the velocity and frequency of the harmonic
moving load. The determinant of this dynamic sti!ness matrix could be zero at certain
velocities and frequencies for an undamped case, i.e.,

DK (v, u) D"0. (28)

Equation (28) gives the resonant condition, by which the critical velocities and the resonant
frequencies can be determined. If u"0, equation (28) becomes a function of velocity only,
the velocity which satis"es this condition is called the critical velocity for an undamped
in"nite Timoshenko beam on elastic foundation to a constant moving load. If v"0,
equation (28) can also give the natural frequency for an undamped in"nite Timoshenko
beam on elastic foundation, and it is exactly equal to that of a simple spring}mass system,
i.e., u

n
"(k

s
/m)1@2.

7. EXAMPLE AND DISCUSSION

A European high-speed rail as shown in Figure 4 has the following properties:
A"76)86 cm2, I"3)06]103 cm4, m"60)34 kg/m, E"2]107 N/cm2, J"2)41]
10~1 kg m, k@"0)2, l"0)3, G"7)69]106 N/cm2. The in#uences of the sti!ness coe$cient
of the rail foundation on the critical velocity (v

cr
) and the resonant frequency (u

r
) of the

harmonic moving load are shown in Figures 5 and 6 respectively. It should be noted that the
critical velocity of the rail on a speci"c foundation could have one or two values for a given
loading frequency u. When u"0 for the case of a constant moving load, there is only
a critical velocity. The two critical velocities approach one as the loading frequency
u approaches zero, and they separate from the critical velocity for u"0 more and more as
u increases, one is decreasing and the other is increasing from the critical velocity for u"0
respectively. The foundation sti!ness k

s
"1)0]107 N/m2 for an example, the critical

velocity has two values when u)407)10 rad/s, and it has only one value when
u'407)10 rad/s. The critical velocity increases as the foundation sti!ness increases for
a given loading frequency. Figures 5 and 6 also show the relationship between the critical
velocity and the resonant frequency. If the ranges of the foundation sti!ness, the velocity



Figure 4. A European high-speed rail (UIC60), unit: mm.

Figure 5. Critical velocity and resonant frequency versus foundation sti!ness.
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and frequency of the moving load for today's engineering interest are as follows:
5]106)k

s
(109 N/m2, v(200 m/s, and u(4000 r.p.m.; therefore the resonance of this

rail example could not occur in engineering application except k
s
)2]107 N/m2.

The damping ratio of the rail system is de"ned by m"c
d
/c

cr
, where c

cr
represents the

critical damping coe$cient de"ned by c
cr
"2 (m k

s
)1@2. The given rail on the viscoelastic

foundation of k
s
"1)6]107 N/m2, and m"0}0)8 are under investigation. The determinant

and coe$cients of the dynamic sti!ness matrix are shown in Figures 7 and 8 for the loading
frequencies u"0 and 400 rad/s respectively. All the imaginary parts of the sti!ness
coe$cients for u"0 are very small and can be neglected. There is only one critical velocity
at v

cr
"558)94 m/s for u"0,. and there are two critical velocities at v

cr
"189)77 and

821)40 m/s for u"200 rad/s. The real parts of all the sti!ness coe$cients for m"0 and
u"0 are zero at the critical velocity v

cr
"558)94 m/s, but only the real or imaginary parts



Figure 6. Critical velocity versus resonant frequency for di!erent foundation sti!ness.

Figure 7. Dynamic sti!ness matrix for constant moving load (u"0, v
cr
"558)94 m/s):

**, m"0; } } } } } , m"0)01; .............., m"0)1; } )} ) } ) , m"0)3; *2*2, m"0)8.
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Figure 8. Dynamic sti!ness matrix for harmonic moving load (u"400 rad/s,

v
cr
"189)77 and 821)40 m/s):**, m"0; } } } } , m"0)01; ..........., m"0)1; }} . }} . }}, m"0)3;* . . .* . . . , m"0)8.
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of the sti!ness coe$cients for m"0 and uO0 are zero at the two critical velocities
v
cr
"189)77 and 821)40 m/s.
The shape functions /

1
(x

1
) and /

2
(x

1
) of the rail are shown in Figure 9 for the cases of

v"200 m/s, u/u
r
"0}4)0 (where u

r
"391)52 rad/s), and m"0)1. The amplitude functions

of the de#ection U(x
1
), rotation W(x

1
), bending moment M(x

1
), and shear force<(x

1
) of the

rail subjected to a harmonic moving load F (t)"F
0

eiut d (x!vt), where F
0
"!10 kN and

v"200 m/s, are as shown in Figures 10 and 11 respectively. The phase angle of the



Figure 9. Shape functions (v"200 m/s, u
r
"391)52 rad/s, m"0)1). (a, b, g, h) **, u/u

r
"0, } } } } ,

u/u
r
"0)5; (c, d, i, j) **, u/u

r
"1)0, } } }} , u/u

r
"1)5; (e, f, k, l) **, u/u

r
"2)5, } }} } u/u

r
"4.0.
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displacement (or stress) wave at each point x
1

could be di!erent due to the damping
presented in the rail system. It means that the di!erent positions on the rail could not be
vibrating at the same phase. All the imaginary parts of the displacement (or stress) waves as
shown in Figures 9}11 should be vanished for an undamped system (i.e., m"0). For the case
of u/u

r
(0)5, the dynamic e!ect becomes less and less important, and the rail response

approaches the static one as u/u
r
approaches zero. Therefore, all the imaginary parts of

the displacement waves as shown in Figures 9 and 10 are small and could be neglected for
the low-frequency cases (say u/u

r
)0)5). The wave shapes of these low-frequency cases



Figure 10. Real and imaginary parts of amplitudes of de#ection and rotation (v"200 m/s, u
r
"391)52 rad/s,

m"0)1). (a, b, g, h)**, u/u
r
"0, } } } } , u/u

r
"0)5; (c, d, i, j)**, u/u

r
"1)0, } } } } , u/u

r
"1)5; (e, f, k, l)**,

u/u
r
"2)5, } } } } u/u

r
"4.0.

820 Y.-H. CHEN E¹ A¸.
are very similar to that for the case of u"0, and they are almost symmetrical or
antisymmetrical about the loading point for these cases. As u/u

r
'0)5, the dynamic e!ect

become more and more important, and the damping ratio will play an important role for
these cases. Both the real and imaginary parts of the displacement wave become smaller and
smaller as u/u

r
*2)0. All the waves die out very fast as the distance x

1
increases from the

loading point also for the low-frequency cases, on the contrary they could propagate longer
distance away from the loading point for the high-frequency cases (say u/u

r
*1)0). The

length of the front waves are smaller than that of the rear ones for these high-frequency
cases. The de#ection and stress are signi"cant when the loading frequency coincides with



Figure 11. Real and imaginary parts of amplitudes of bending moment and shear force (v"200 m/s,
u

r
"391)52 rad/s, m"0)1). (a, b, g, h) **, u/u

r
"0, } } } } , u/u

r
"0)5; (c, d, i, j) **, u/u

r
"1)0, } } } } ,

u/u
r
"1)5; (e, f, k, l) **, u/u

r
"2)5, } } }} u/u

r
"4.0.
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the resonant frequency, i.e., u"u
r
, especially for the low damping case. The phase angle

h and amplitude A of the displacement (or stress) wave at any position x
1

can be obtained
by tan h"I/R and A"(R2#I2)1@2, where R and I represent the real and imaginary parts
of the displacement (or stress) wave at the position x

1
respectively. The phase angle and

amplitude of the de#ection (or stress) wave of the rail example subjected the harmonic
moving load at resonance (i.e., u/u

r
"1)0) are shown in Figure 12. The amplitude of the



Figure 12. Phase angles and amplitudes of de#ection, bending moment, and shear force (v"200 m/s,
u

r
"391)52 rad/s, m"0)1, u/u

r
"1)0): ***, amplitude; - - - - - - - , phase angle.
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front de#ection wave at resonance is almost the same as the rear one. But the amplitude of
the front stress waves are much larger than that of the rear ones. It can also be seen
obviously from the phase-angle curve in Figure 12 that the front wavelength of the
de#ection or stress is smaller than the rear one.

8. CONCLUSIONS

Some conclusions could be drawn from this study and given as follows:

(1) The dynamic sti!ness matrix established in this paper is simple and very e$cient to be
applied to the analysis of an in"nite or semi-in"nite Timoshenko beam on viscoelastic
foundation to a harmonic moving load. It can also be applied to a harmonic load (v"0) or
a constant moving load (u"0) as a special cases.

(2) The dynamic sti!ness matrix is essentially a function of the velocity and the frequency
of the harmonic moving load. Therefore, the critical velocity and resonant frequency can be
easily determined by setting the determinant of the dynamic sti!ness matrix equal to zero

(3) There is only one critical velocity for the case of a constant moving load (u"0), but
there might be one or two critical velocities for the case of a harmonic moving load (uO0).
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(4) The two critical velocities approach one as the loading frequency u approaches zero,
and they separate from the critical velocity for u"0 more and more as u increases, one is
decreasing and the other is increasing from the critical velocity for u"0 respectively.

(5) The dynamic response due to the harmonic component of a moving load might be
important and should be taken into account in analysis, especially for the low-damping case
and when the loading frequency (u) coincides with the resonant frequency (u

r
).

(6) The imaginary parts of the shape functions and the amplitude functions of the
de#ection, rotation, bending moment, and shear force are all very small and could be
neglected for the low-frequency cases (say u/u

r
)0)5).

(7) The wave shapes of the responses for the low-frequency cases (say u/u
r
)0)5) are

very similar to that for the case of the constant moving load (u"0), and they are almost
symmetrical (for the de#ection and bending moment) or antisymmetrical (for shear force)
about the loading point for these cases.

(8) All the response waves die out very fast as the distance x
1

increases from the loading
point for the low-frequency cases (say u/u

r
)0.5), but they could propagate longer distance

away from the loading point for the high-frequency cases (say u/u
r
*1)0).

(9) The length of the front waves of the responses are smaller than that of the rear waves
for the high-frequency cases (say u/u

r
*1)0).

(10) As u/u
r
'0)5, the dynamic e!ect becomes more and more important, and the

damping ratio will play an important role for these case. Both the real and imaginary parts
of the de#ection wave become smaller and smaller as u/u

r
*2)0.
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